Spring Building Coordinators Meeting

The University of Iowa BioVentures Center

Welcome Building Coordinators!!
Building Coordinators Meeting

Welcome Building Coordinators!!
Building Coordinators Meeting

Welcome – Diane Gallagher
Hosts – Stephanie Dengler, Diann Pavelka
UI Research Park Updates – Rod Lehnertz
Oakdale Renewable Energy Plant – Ferman Milster
Universal Accessibility – Dan Heater & Brian Manternach
Access and Construction Alerts – Wendy Moorehead
Electrical Hazards in Buildings – Dan Beck
Flood Preparation – Dan Heater
FM Strategic Planning & Focus Groups – Don Guckert
SCORE Cleaning Program – Dan Heater
U.I. Research Park Updates

Rod Lehnertz – Director - Planning, Design and Construction
State Hygienic Laboratory
Hydraulic Wave Basin
Other Research Park Projects

- Oakdale Hall Demolition
- Environmental Management Facility
- Information Technology Facility
- Renewable Energy Plant and Utilities
Oakdale Renewable Energy Plant

Ferman Milster – Utilities and Energy Management
Universal Accessibility

Brian Manternach and Dan Heater

Building & Landscape Services
How we understand “disability”…

• a physical or mental impairment that substantially limits one or more of major life activities

• the result of an interaction between persons with impairments and attitudinal and environmental barriers that hinder their full and effective participation on an equal basis with others
Common framing.

• “The disability” is deficient, abnormal, negative

• “The problem” resides within the individual

• The remedy is cure or normalization of the individual

• The intervention agent is the professional
What does “reframing” look like?

• Disability is a difference; the condition, in itself, is neutral

• “The problem” is derived from interaction between the individual and society

• The environment, and all that comprises it, is the focus of remedy

• The intervention agent can be anyone who can affect the design of an environment or any of its collective components
Further understanding

• Design is powerful and profoundly influences our daily lives.

• Good design is essential for achieving inclusion and full participation.

• Creating usable, equitable, sustainable, and inclusive environments, practices, and systems is a shared responsibility.

• Improved usability enhances the value of buildings for all
ITS ALL ABOUT CHOICE

• Accessibility codes are focused on functional issues and minimal solutions. They do not guarantee good design.

• Universal accessibility addresses a broader mission that recognizes choices and differences. It integrates usability with other important design concerns like aesthetics and sustainable design.

• Has no predefined end state.

• Unlike a legal mandate, there is no predefined minimum level of compliance.

• Without a legal mandate, adoption of universal accessibility depends on acceptance by a broad constituency, including designers and other decision makers.
Choices.....

- Furniture configurations that do not create physical barriers to wheelchair users

- Automatic flush controls and faucets

- Delayed reaction features on door closers

- Flooring that borders the wall is of a contrasting color to the wall and adjacent flooring

- Building directories accessible through the use of visual, audible, and tactile information
Steps to “Access”

- Identify
- Document
- Request
- Accommodate
Path to Universal Accessibility
Universal Accessibility at The University of Iowa

Creating an inviting, welcoming and supportive environment for persons with disabilities requires:
UI Facilities Accessibility Plan

The plan is built around four objectives:

- Accommodating the needs of employees
- Ensuring access to university services
- Providing a more accessible campus environment
- Improving building accessibility
UI Facilities Accessibility Plan

The plan is built around four strategies:

• Identifying and assessing accessibility challenges
• Developing and employing an accessibility decision-making framework
• Implementing commissioning and verification measures
• Funding and resourcing the objectives of the plan
Access and Construction Alerts

Wendy Moorehead – Facilities Management

http://facilities.uiowa.edu/closures/
Universal Accessibility & Access and Construction Alerts

Questions?
Electrical Hazards in Buildings

Dan Beck – Safety Engineer Facilities Management
Electrical Hazards in Buildings

On 2/24/11, IOSH cited the UI with 3 violations:

• Item 1 – The schedule within a MRC electrical panel did not identify all breakers ($2,250)

• Item 2 – Carts were positioned in front of electrical panels within the Chilled Water plant, this restricted the required 36 inch emergency access ($2,250)

• Item 3 – There were openings within a MRC electrical panel that could expose employees to electrical hazards. ($4,500)
• Item 1 – MRC electrical panel did not identify all breakers ($2,250)

• Item 3 – MRC electrical panel had openings that could expose employees to electrical hazards. ($4,500)
Results of Electrical Assessment

- Out of 2,225 panels assessed, 1,417 issues were identified
 - 612 or 43% - Missing or inaccurate schedule
 - 387 or 27% - Missing screws or hinges
 - 176 or 12% - Blocked 36 inch emergency access
 - 156 or 11% - Missing arc flash labeling
 - 86 or 6% - Open panel enclosures/ exposed wiring.
Is this a violation?

Dollar Amount of Penalty?
Corrective Action Plan

• Correct all physical panel issues by 5/27/11.

• Panel schedule update strategy.

• The vast majority of the 176 issues of blocked 36 inch emergency access were not under the control of FM.
 – All areas within FM control will be corrected immediately and managed with periodic inspections.
 – **We need your assistance with the remaining issues of 36 inch blocked emergency access.**
Questions?
Flood Preparation and Planning 2011

Dan Heater – Building and Landscape Services
Flood Preparation and Planning 2011

HESCO BARRIERS
Flood Preparation and Planning 2011
Flood Preparation and Planning 2011
FM Strategic Planning - BC Focus Groups

Don Guckert – Facilities Management
Comprehensive Certified Custodial Cleaning Program

Dan Heater – Building and Landscape Services
Team Cleaning
Prepared for: University of Iowa
Zone Cleaning

- Each worker is assigned a certain zone or area and is responsible for performing all of the cleaning functions in the entire area. These duties generally include trash removal, dusting, restroom cleaning, polishing, sweeping, mopping, vacuuming and other duties as assigned.

Team Cleaning

- Workers are trained to perform specific related cleaning tasks. Typically, team cleaning consists of four specialty areas: light-duty specialist, vacuum specialist, restroom specialist, and utility specialist.
Zone cleaning is designed to instill in the worker a sense of "ownership" as they are responsible for a specific area. Potential downside of this system include:

- Zones are different in size and workload distribution in many cases are unbalanced and difficult to measure.
- Certain functions get overlooked.
- Employees must be well-trained in every function of cleaning.
Team Cleaning is designed to achieve a high level of overall efficiency by work type specialization and evenly distributing work loads. Within a building, a group of specialists are deployed in a systematic method performing specific cleaning tasks.

Although there are four types of specialists, a team can be comprised of any number of people and any configuration of the specialist depending on the site and the cleaning specifications of the building.
SAME FACILITY UTILIZING TEAM CLEANING

Zone Cleaning

Zone Cleaner

Zone Cleaner

Zone Cleaner

Working Supervisor

Zone Cleaner

Zone Cleaner

Zone Cleaner

Zone Cleaner

Team Cleaning

Utility Supervisor

Light Duty Specialists

Light Duty Specialists

Rest Room Specialists

Vac Specialists

Vac Specialists
COMPONENT PARTS OF TEAM CLEANING

- Specialists
- Quadrant scheduling
- Backpack vacuuming technology
- Time-bound estimates
- Job assignment cards
- Built in quality management
- Ease of training
Team Cleaning
- Light Duty Specialist (Starter)
- Vacuum Specialist (Closer)
- Restroom Specialist (Sanitor)
- Utility Specialist (Utility)
STASTER (LIGHT DUTY SPECIALIST)

- Pickup waste
- Capture dust
- Clean boards
- Spot
- Send info to Vacuum Specialist
Closer (Vacuum Specialist)

- Vacuum
- Reposition all furniture
- Check quality
- Turn off lights?
- Close down
SANITOR (RESTROOM SPECIALIST)

- Fill dispensers
- Remove trash
- Clean and sanitize fixtures, floor and water fountains
- Sweep/vacuum and mop tile floors
- Turn off lights
UTILITY (UTILITY SPECIALIST)

- Vacuum stairwells
- Clean brass, stainless steel, glass, blinds and carpets
- Any other periodic specialty services
- Highly flexible position, spec driven
- Pull trash to designated area
The total assigned square feet for the Starter & Closer should be divided into Quads for balancing cleaning frequencies.
null
A computerized Job Assignment Card is an integral tool in an advanced program.
SYSTEM BENEFITS

- All employees are actively involved in the system
- Training time is reduced by 50-75%
- System process leads to productive discipline
- Productivity is increased
Cleaning Schedule

Routine Cleaning
- 5 days a week
- All Areas

Monday
- Monday - Quad 1

Tuesday
- Tuesday - Quad 2

Wednesday
- Wednesday - Quad 3

Thursday
- Thursday - Quad 4

Detail Cleaning
- 4 days a week

Project Work
- 1 day a week
- 4 times a month

- Fridays

Note: There are 4 Fridays in a month
Productivity Analysis

- Routine Cleaning
 - Minimum daily requirements
 - 13,000 to 16,500 sf/hr/specialist

- Detail Cleaning
 - In depth, thorough weekly cleaning of all surfaces, wall to wall with a focus on health, safety and IAQ
 - 5,700 to 7,000 sf/hr/specialist
IMPLEMENTATION PRIMER

- Transition Plan critical
- May utilize facilitator
- Pilot model concept
- Learning curve for all
- Start up an “A” Team
- 4 to 8 weeks first building/area
- Review, modify and press on
Building Coordinators Meeting

Questions?
Thank you!

Enjoy the tour!
Energy Control Center

Balancing supply and demand is key to running our campus cost effectively.

Forecasting demand enables us to:

• Optimize energy usage by running the most efficient combination of boilers, turbines and chillers to supply a forecasted load.

• Receive best available energy pricing and avoid penalties from our natural gas and electricity suppliers.
Energy Control Center

VantagePoint Home Page
Open Forum

Questions and Comments