AGENDA

- Organizational roles
- Comprehensive Energy Master Plan (CEMP) goals
- Metering program
- Enterprise Energy Management (EEM) System
- Benchmarking buildings
- Project identification
ORGANIZATIONAL ROLES

THE TEAM

- ARC FLASH
- BLDG CONTROLS
- ADACENT PROJECTS
- BLDG OCCUPANTS
- BLDG DEPUTIES
- Maintenance
- ENGINEERING
- HIGH VOLTAGE
- LOW VOLTAGE
- UTILITIES DISTRIBUTION
- PM & C

ORGANIZATIONAL ROLES

- Maintain meters
- Add points and validation
- Maintain users
- View Screen creation
- Set up alarms for points
- Create/maintain predictive analytics models
- Manage Web Configuration
- History maintenance

Malcolm Drane, Purdue University
Jason Kutch, Purdue University
CEMP GOALS

• Plan was developed in 2012
• Analyze production, distribution, and demand
 – Included metering all campus buildings
 – Controls optimization of building automation systems (BAS)
 – System wide review of chilled water
 • i.e. chiller operation, building pumps

CEMP GOALS

• Effective Energy Management
• Energy Savings Opportunities
• Fiscally sustainable plan system wide
• Education and Collaboration
• Energy-Conscious and Environmentally responsible culture
• 10 year recurring energy and cost savings
METERING PROGRAM

- Purdue Produced utilities
 - Chilled Water
 - Electricity
 - Domestic Water
 - Steam Condensate
- Easily identify issues
 - Broken valve
 - Control deficiencies
 - Low delta T, high flows
 - Simultaneous heating and cooling

Purdue University

METERING PROGRAM

2012
- $2.3M, 43 Buildings
- Master plan developed

2013
- $2M
- Approx. 40 buildings

2014
- $2M
- Approx. 40 buildings

2015
- $1M
- Over 140 buildings by 2015
METERING PROGRAM

ARCHITECTURE

- Supply & Return Temperature
- Chilled Water
- Power
- Lighting
- DCCP
- Domestic Water Main
- Domestic Water Irrigation
- Steam Condensate
- Temperature
- Ethernet

METERING PROGRAM

METER SELECTION CRITERIA

- High accuracy
- Low maintenance
- Low pressure drop
- Smart meter verification
Utility Metering at Purdue

METERING PROGRAM

MECHANICAL METERS

- **Chilled and Domestic Water meters**
 - Inline electromagnetic
 - +/- 0.5 % accuracy
 - No moving parts or obstructions
 - No mechanical maintenance

- **Steam Condensate meters**
 - Vortex Shedding
 - +/- 1 % accuracy
 - No moving parts
 - No mechanical maintenance

- **Highly accurate RTD’s**
 - Chilled Water
 - Steam Condensate

INSTALLATION GUIDELINES
Metering Program

Installation Guidelines

Metering Program

Data Points

<table>
<thead>
<tr>
<th>Chilled Water</th>
<th>Domestic Water</th>
<th>Steam Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>Flow</td>
<td>Flow</td>
</tr>
<tr>
<td>Total Gallons</td>
<td>Total Gallons</td>
<td>Total Gallons</td>
</tr>
<tr>
<td>Supply Temp</td>
<td>Daily Total Gallons</td>
<td>Daily Total Gallons</td>
</tr>
<tr>
<td>Return Temp</td>
<td></td>
<td>Temperature</td>
</tr>
<tr>
<td>BTU/HR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total TNHR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METERING PROGRAM

ELECTRIC METERS

Selection Criteria
- Low Maintenance
- Revenue Grade Metering
- High Precision Meter
 - Minimum of 0.06% accuracy
- Metering Form Selection
 - (Form 5 vs. Form 9)
- Waveform capture
- Advanced Trending and data storage
- Modbus Communication

ELECTRIC METERS

COMPONENTS

- Current Transformers (CT’s)
 - Revenue Grade Accuracy
 - 0.3% Accurate
 - Core Selection
 - Split vs. Solid
 - Sizing Considerations
 - Physical Size
 - CT Ratio
 - CT Rating Factor
 - Low end Current
Utility Metering at Purdue

METERING PROGRAM

DATA POINTS

<table>
<thead>
<tr>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>Current</td>
</tr>
<tr>
<td>Power (kVA)</td>
</tr>
<tr>
<td>Energy (kWh)</td>
</tr>
<tr>
<td>Demand Power (kVA/kW)</td>
</tr>
<tr>
<td>Peak Demand Power</td>
</tr>
<tr>
<td>Power Factor</td>
</tr>
</tbody>
</table>

DATA CONCENTRATOR CONTROL PANEL (DCCP)

- Centralized data
- No manual meter reads
- Ease of maintenance
- Less traffic on BAS
- Simple integration into EEM
- Flexibility
METERING PROGRAM

DCCP
- Design / Fabrication Process
- Components
- Benefits
 - Flexibility
 - Expandability
 - Maintainability

METERING PROGRAM

UNIQUE IDENTIFIERS

- Building Number
 - 1085 – ELLT
- Service
 - DW – domestic water
- Unique Instrument Number
 - 01 – meter one of domestic water meters
- Instrument Type
 - ME – mechanical type
- Size (inches x 100)
 - 0200 – 2 inch meter
METERING PROGRAM

- **DCCP**

Commissioning process:
- Custom program
- Validate Installation
- Custom Spanning

EEM SYSTEM

- Enterprise Energy Management System - What is it?
 - Real-time performance management and predictive analytics software

- EEM System software
 - Data historian
 - Predictive analytics
 - Electronic billing
EEM SYSTEM

• Connected systems to EEM
 – Power plant
 – Building Automation System (BAS)
 – Data Concentrator Control Panel (DCCP)
 – Legacy Meters

ARCHITECTURE

Interfaces

Power Plant

BAS

Utility Meters

Legacy Meters

EEM Historian

Web Server

PC application

Web application
BENCHMARKING BUILDINGS

July 2014 EUI

EUI (Btu/sf/month)

Elec. Steam CW

JNSN KCTR KNIV LAMB LWSN LYNN MACK MANN MCUT ME MGL MRGN MITHW
CONTACT

• Jason M. Kutch, P.E.
 – Mechanical Engineer; jmkutch@purdue.edu

• Malcolm E. Drane, P.E.
 – Electrical Engineer; mdrane@purdue.edu

QUESTIONS?