Dear Customer: We are pleased to present a summary of the quality of the water provided to you during the past year. The Safe Drinking Water Act (SDWA) requires that utilities issue an annual “Consumer Confidence” report to customers in addition to other notices that may be required by law. This report details where our water comes from, what it contains, and the risks our water testing and treatment are designed to prevent. The University of Iowa Water Plant is committed to providing you with the safest and most reliable water supply.

Water Produced at the University of Iowa Water Treatment Plant meets or surpasses all federal and state drinking-water standards at this time.

For information about the University of Iowa water supply, call us at 319-335-5168.

Water Source
The University of Iowa Water Plants’ primary source of water is the Iowa River. Alternate sources are a Cambrian-Ordovician Aquifer well and water purchased from Iowa City.

This water supply obtains water from one or more surface waters. Surface water sources are susceptible to sources of contamination within the drainage basin. Susceptibility is high.

This water supply obtains water from one or more groundwater aquifers. Every aquifer has a degree of susceptibility to contamination because of the characteristics of the aquifer, overlying materials, and human activity. Susceptibility to contamination generally increases with shallower aquifers, increasing permeability of the aquifer and overlying material, nearby development or agricultural activity, and poorly maintained wells. A detailed evaluation of your source water was completed by the Iowa Department of Natural Resources and is available from this water supply. Susceptibility is insignificant.

How to Read This Table
This report is based upon tests conducted in the year 2009 by The University of Iowa Water Plant. Terms used in the Water-Quality Table and in other parts of this report are defined here.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible, using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Running Annual Average or RAA: The average of quarterly samples collected throughout the water system.

Key to Table
AL = Action Level
MCL = Maximum Contaminant Level
MCLG = Maximum Contaminant Level Goal
N/A = not available
ppm = parts per million, or milligrams per liter (mg/l)
ppb = parts per billion, or micrograms per liter (µg/l)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Tested</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>09/08/07</td>
<td>ppm</td>
<td>AL=15</td>
<td>0</td>
<td>20</td>
<td>0-20</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Copper</td>
<td>09/08/07</td>
<td>ppm</td>
<td>AL=1.3</td>
<td>1.3</td>
<td>0.12</td>
<td>0-.12</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Nitrate</td>
<td>04/22/09</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>9.0</td>
<td>0.9 – 9.0</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Turbidity</td>
<td>12/26/09</td>
<td>ppm</td>
<td>AL=0.3</td>
<td>AL=0.3</td>
<td>0.16</td>
<td>0.04 - 0.16</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Fluoride</td>
<td>05/10/09</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>1.4</td>
<td>0.69 – 1.4</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth, Discharge from fertilizer and aluminum factories</td>
<td>NO</td>
</tr>
<tr>
<td>Sodium</td>
<td>09/02/09</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>7.6</td>
<td>0 – 7.6</td>
<td>Erosion of natural deposits</td>
<td>NO</td>
</tr>
</tbody>
</table>
Synthetic Organic Contaminants Including Pesticides and Herbicides

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Tested</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>RAA</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>07/08/09</td>
<td>ppb</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>N/A</td>
<td>Runoff from herbicide used on row crops</td>
<td>NO</td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Tested</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>RAA</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes</td>
<td>09/30/09</td>
<td>ppb</td>
<td>80</td>
<td>N/A</td>
<td>51</td>
<td>18 - 98</td>
<td>By-products of drinking water chlorination</td>
<td>NO</td>
</tr>
<tr>
<td>Total Haloacetic Acids</td>
<td>12/31/09</td>
<td>ppb</td>
<td>60</td>
<td>N/A</td>
<td>22</td>
<td>0 - 32</td>
<td>By-products of drinking water chlorination</td>
<td>NO</td>
</tr>
</tbody>
</table>

Chlorine Residual Report

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Type</th>
<th>Value</th>
<th>Min</th>
<th>Max</th>
<th>Begin Date</th>
<th>End Date</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>RAA</td>
<td>1.7</td>
<td>0.66</td>
<td>2.48</td>
<td>01/01/09</td>
<td>12/31/09</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Unregulated Contaminants

The University of Iowa Water Plant did test for some unregulated contaminants; these results are available by contacting the Water Plant.

Required Additional Health Information

To ensure that tap water is safe to drink, EPA prescribes limits on the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants do not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.
(D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can, also, come from gas stations, urban storm water runoff and septic systems.
(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems.

FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

(F) Lead if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines building plumbing components. When your water has been sitting for several hours you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking. If you are concerned about lead in your water, you may wish to your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Some people may be more vulnerable to contaminants in drinking water than is the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

Concerning Nitrate in Our Water

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.
Facility Name: University of Iowa Water System PWSID#: 5225101

Date: 06/26/10

PUBLIC NOTIFICATION

MONITORING VIOLATION OF THE WATER TESTING SCHEDULE

Our water system violated a drinking water standard(s) over the past year. Even though these were not emergencies, as our customers, you have a right to know what happened and what we did to correct these situations.

We, the University of Iowa Public Water Supply are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the second quarter of 2009 we did not monitor or test one sample for sodium and therefore cannot be sure of the quality of our drinking water during that time.

What should I do?

There is nothing you need to do at this time.

What Happened? What is being done?

A failure of the automated reminder system occurred and the sample bottles for the sodium sample for the 2nd quarter of 2009 did not get sent to us on time. We collected a sample in the 3rd quarter and the results are contained in the CCR for 2009. Sodium levels have never presented an issue for our water system.

For more information, please contact Scott Slee at 319-335-5168

National Primary Drinking Water Regulation Compliance

For more information, call The University of Iowa Water Plant at 319-335-5168.