Water Source

The University of Iowa Water Plants’ primary source of water is the Iowa River. Alternate sources are a Cambrian-Ordovician Aquifer well and water purchased from Iowa City.

This water supply obtains water from one or more groundwater aquifers. Every aquifer has a degree of susceptibility to contamination because of the characteristics of the aquifer, overlying materials, and human activity. Susceptibility to contamination generally increases with Shallower aquifers, increasing permeability of the aquifer and overlying material, nearby development or agricultural activity, and poorly maintained wells. A detailed evaluation of your source water was completed by the Iowa Department of Natural Resources and is available from this water supply. Susceptibility is insignificant.

How to Read this Table

This report is based upon tests conducted in the year 2016 by the University of Iowa Water plant. Terms used in the Water-Quality Table and in other parts of this report are defined here.

Maximum Contaminant Level or MCL:
The highest level of a contaminant that is allowed in drinking water. MCLs are set as close as feasible, using the best available treatment technology.

Maximum Contaminant level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Required Additional Health Information

To ensure that tap water is safe to drink, EPA prescribes limits on the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants do not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at (800-426-4791).

Terms used in the Water-Quality Table and in other parts of this report are defined here.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also, come from gas stations, urban storm water runoff and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

(F) If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and building plumbing. University Water System is responsible for providing high quality drinking water, but cannot control the variety of material used in plumbing components. When your water has been sitting for several hours you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

Concerning Nitrate in Our Water

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.
<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Date Tested</th>
<th>Unit</th>
<th>MCL</th>
<th>MCLG</th>
<th>Detected Level</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>2016</td>
<td>ppb</td>
<td>AL=15</td>
<td>0</td>
<td>0.00</td>
<td>ND−2</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Copper</td>
<td>2016</td>
<td>ppm</td>
<td>AL=1.3</td>
<td>1.3</td>
<td>0.06</td>
<td>ND−0.12</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Nitrate</td>
<td>2016</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>9.0</td>
<td>5.1−9.0</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Turbidity</td>
<td>2016</td>
<td>ppm</td>
<td>AL=.3</td>
<td>AL=.3</td>
<td>0.28</td>
<td>0.04−0.28</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
<td>NO</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2016</td>
<td>ppm</td>
<td>4</td>
<td>4</td>
<td>0.55</td>
<td>0.55−0.80</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
<td>NO</td>
</tr>
<tr>
<td>Sodium</td>
<td>04/03/2016</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>38</td>
<td>N/A</td>
<td>Erosion of natural deposits</td>
<td>NO</td>
</tr>
<tr>
<td>Microbiological Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform</td>
<td>2016</td>
<td>samples</td>
<td>5%</td>
<td>0</td>
<td>1 positive</td>
<td>N/A</td>
<td>Naturally present in the environment</td>
<td>NO</td>
</tr>
<tr>
<td>Synthetic Organic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>07/22/2015</td>
<td>ppb</td>
<td>3</td>
<td>3</td>
<td>.0002</td>
<td>N/A</td>
<td>Runoff from herbicide used on row crops</td>
<td>NO</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>2015</td>
<td>mg/l</td>
<td>N/A</td>
<td>N/A</td>
<td>3.3</td>
<td>1.07−4.38</td>
<td></td>
<td>NO</td>
</tr>
</tbody>
</table>

Key to Table

- AL = Action Level
- MCL = Maximum Contaminant Level
- MCLG = Maximum Contaminant Level Goal
- ppm = parts per million, or milligrams per liter (mg/l)
- ppb = parts per billion, or micrograms per liter (µg/l)

Monitoring Violation

Our water system violated a drinking water standard(s) over the past year. Even though these were not emergencies, as our customers, you have a right to know what happened and what we did to correct these situations.

We, the University Water System are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During January of 2014 we did not submit monitoring results as required, all tests and results were performed at the University of Iowa Water Plant as required. The results were not properly submitted in our Monthly Operation Report (MOR) and there were no violations of the MCL’s. The quality of the drinking water was not put at risk during this time.

What should I do? There is nothing you need to do at this time.

What Happened? What is being done?

A change in the interruption of the reporting rules resulted in our error. The results were properly submitted in our Monthly Operation Report (MOR) and there were no violations of the MCL’s. The quality of the drinking water was not put at risk during this time.

For more information, please contact Scott Slee at 319-335-5168.